In topology and related areas of mathematics, a quotient space (also called an identification space) is, intuitively speaking, the result of identifying or "gluing together" certain points of a given space. The points to be identified are specified by an equivalence relation. This is commonly done in order to construct new spaces from given ones.
Contents |
Let (X,τX) be a topological space, and let ~ be an equivalence relation on X. The quotient space, is defined to be the set of equivalence classes of elements of X:
equipped with the topology where the open sets are defined to be those sets of equivalence classes whose unions are open sets in X:
Equivalently, we can define them to be those sets with an open preimage under the quotient map which sends a point in X to the equivalence class containing it.
The quotient topology is the final topology on the quotient space with respect to the quotient map.
Warning: The notation R/Z is somewhat ambiguous. If Z is understood to be a group acting on R then the quotient is the circle. However, if Z is thought of as a subspace of R, then the quotient is an infinite bouquet of circles joined at a single point.
Quotient maps q : X → Y are characterized among surjective maps by the following property: if Z is any topological space and f : Y → Z is any function, then f is continuous if and only if f O q is continuous.
The quotient space X/~ together with the quotient map q : X → X/~ is characterized by the following universal property: if g : X → Z is a continuous map such that a~b implies g(a)=g(b) for all a and b in X, then there exists a unique continuous map f : X/~ → Z such that g = f O q. We say that g descends to the quotient.
The continuous maps defined on X/~ are therefore precisely those maps which arise from continuous maps defined on X that respect the equivalence relation (in the sense that they send equivalent elements to the same image). This criterion is constantly used when studying quotient spaces.
Given a continuous surjection f : X → Y it is useful to have criteria by which one can determine if f is a quotient map. Two sufficient criteria are that f be open or closed. Note that these conditions are only sufficient, not necessary. It is easy to construct examples of quotient maps which are neither open nor closed.